世界杯 | 消灭“越位”争议 它们的眼睛就是尺******
世界杯记录着年轻人的成长
也见证着赛场科技的革新
巴西世界杯引进门线技术
俄罗斯世界杯采用视频助理裁判(VAR)
半自动越位识别技术(SAOT)
也在2022卡塔尔世界杯上首次亮相
图源:新华社——VAR工作间
今天就让我们一起来了解
世界杯里的“黑科技”
看看在本届世界杯中
它们又会有怎样的应用呢?
从没有裁判到科技协助裁判
回望百余年前,最初的足球规则甚至都没有引入裁判这个概念。
起初,球场上出现的争议由双方队长商议解决,不过,随之而来的抱怨和混乱让队长们力不从心。于是,裁判的角色应运而生,他口中的哨子甚至要比裁判本身更早进入到足球规则里。在随后的日子里,两名助理裁判(或称之为边裁)加入比赛,辅助主裁判对比赛做出判罚。
图源:网络——国际足球协会理事会(IFAB)编纂的《竞赛规则》
电视转播的出现,让观众能够更加清晰地观察到赛场上的细节,也促使裁判的辅助工具实现“进化”。英超是最先提出使用门线技术的主流联赛,不过他们的动议起初却遭到了国际足球协会理事会(IFAB)拒绝。
门线技术(Goal-line technology)可以判断球是否越过了球门线,从而判断是否进球有效,该系统是基于嵌进球中的一个芯片,当球穿过布于球门区域的传感器时,芯片可向主裁判所佩戴的智能腕表发送信号。
2010年南非世界杯中的一场比赛,成为这一技术得以使用的重要转折点。在英格兰对阵德国的八分之一决赛中,三狮军团中场兰帕德一脚精彩的射门已明显越过门线,但却被裁判吹罚无效。最终,英格兰以1:4惨遭淘汰。
兰帕德的“门线冤案”,促使门线技术投入到使用中
这粒被吹出的入球不仅促使门线技术被正式采用,也极大地扭转了足球规则的制定者们对于使用高科技手段的态度。
后来,随着科技的发展,VAR技术在所有大型比赛和50多个国家(地区)的联赛等比赛中都得到了广泛的使用。
VAR是英文Video Assistant Referee的缩写,也被称作“视频助理裁判”,由现役裁判员担任,他的职责是通过回放视频向裁判员提供信息,协助裁判员纠正改变比赛走势清晰明显的错漏判,提高判罚的准确性。
VAR主要依靠遍布足球场上的多个摄像机镜头,多机位,多角度捕捉场上球员的每一个细小动作,从而做到“火眼金睛”。当场上出现争议判罚或主裁判需要调取比赛录像时,由技术人员操作,调出相对应的回放节点,以得到更加公正的比赛判罚。
技术创新的最新成果
虽然VAR也可以辅助裁判进行越位识别,但有时碍于镜头角度以及划线位置,在一些体毛级越位的判定上,VAR仍有其局限性。
图源:网络 半自动越位识别技术工作原理
半自动越位识别技术(SAOT)可以理解为VAR的延伸,每座球场顶部将设置12台特制摄像机,对场上的足球和球员进行追踪,以每秒50次的频率发送数据,能够精准确定每名球员的位置。特制摄像机和球内传感器收集的数据信息将由人工智能系统进行分析,只需几秒钟就能对越位情况作出判断。
图源:网络 半自动越位识别技术示意图
主裁判判罚完成后,SAOT会生成3D动画图像,在场内大屏幕以及电视上播放,以更直观地展示球员越位的具体位置,让判罚更加清晰、有说服力。
2021年阿拉伯杯及2021年世俱杯等赛事中的测试中,半自动越位识别技术取得了不错的效果。有统计数据显示,在该技术支持下,视频助理裁判检查越位的平均时长从70秒以上降至25秒。
图源:网络 2022卡塔尔世界杯官方海报
从起初的哨音
到如今先进的
半自动越位识别技术
裁判员的“工具箱”不断升级
历经一百多年的发展历程
足球运动能够始终
作为全世界开展最广泛
最受欢迎的运动之一
不断创新是它最主要的动力之源
资料来源:人民网、人民日报体育、环球杂志、澎湃新闻
整理:董小娴 蔡琳
人工智能,如何妙笔“生”画******
核心阅读
输入一段话,“绘”出一幅画——人工智能的绘画本领,吸引众多职业画师和零基础用户尝鲜。人工智能绘画的本质是计算,接受“语言描述”指令后根据自身的理解还原出图像。未来,人工智能技术应用于艺术创作等领域,还要注意防范潜在风险,让技术进步更好地造福社会。
不用画笔、颜料,输入一段描述性文字,计算机就能自动解析,生成相应的画作。2022世界人工智能大会上,人工智能绘画的展示令观众惊叹。
一些过去专属于人类创作的领域,比如绘画、书法、写作、作曲,如今人工智能也已开始涉足。人工智能是如何绘画的?当前沿技术与艺术相遇,将碰撞出怎样的火花?在内容、版权等方面又是否存在问题?
从文本到图像,人工智能绘画本质是计算
人工智能绘画是一个从文本到图像的生成过程,输入一段话,生成一幅画,本质是计算。简要地说,计算机通过大量学习,能识别特定图片元素和文本之间的关联。同理,人工智能程序在收到“语言描述”指令后,可以根据自身的算法还原出图像。
设定计算机程序作画的想法由来已久。早在20世纪70年代,就有艺术家开发了操作机械臂的电脑程序,让机械臂按照指令在画纸上作画。近些年,人工智能技术日新月异,科研人员尝试设计自动作图的计算机程序。但过去很长一段时间,人工智能“画”出的作品普遍不够好,往往只是一些模糊的图像元素的组合,还称不上是完整的画。
今年以来,人工智能画技迅速“进化”。谈及技术突破原因,百度文心一格总架构师肖欣延认为,这是预训练大模型的兴起、大数据的训练和扩散模型的出现3方面共同作用的结果。
具体来说,预训练大模型增强了人工智能的通用性,成为人工智能技术及应用的新基座;大数据的训练中,通过在众多高性能GPU(图形处理器)算力资源中进行并行学习,计算机能够在短时间内完成大量的数据学习。近年来,几乎所有人工智能的技术发展都受益于这两方面的进展。而对人工智能绘画来说,扩散模型的出现至关重要。
扩散模型的原理是,通过人为逐步添加噪声,让图像逐渐变“模糊”,再不断学习去噪过程,如此人工智能就能从完全是噪声的图片中逐渐还原出清晰的图片,即“画”出图像。
“这一过程与人类学习相似。通常,人们学画从临摹开始,机器也是如此。它最初生成的图像可能很模糊,但计算机会不断修正,从而输出越来越清楚、层次越来越丰富的图像。”肖欣延说。
扩散模型让人工智能绘画技术实现跨越,不仅作画质量快速提升,生成时间也缩短到几秒钟。
众多用户尝鲜,大量应用加速“画技”进化
汤林杰是某互联网公司的运营人员。工作中,他需要借助一些图片来丰富文案,而网络上找到合适的配图并不容易。今年10月,了解人工智能绘画程序后,他尝试自己“画”图。现在,人工智能绘画工具已经是他工作的重要辅助。
随着算法模型对公众开放以及训练数据成本的下降,人工智能绘画门槛越来越低,一些简易化操作平台在国内外兴起。如今,不仅一些职业插画师尝试用人工智能绘画程序辅助作画、激发灵感,许多没有绘画基础的用户也开始尝鲜,并“晒”在社交平台上。
大量需求的涌现也加速了技术的更新迭代。“用人工智能绘画的人越多,算法就越能理解输入的描述文本,画作质量就越高。”肖欣延表示,当前人工智能绘画水平与今年初相比,已经有很大进步。
不过,目前的人工智能绘画技术并不完美。首先,可控性仍然不高,即计算机不能很好理解人类指令的含义,即便是输入“画两个苹果,左边红色,右边绿色”这样的简单描述,生成的图像也可能有很大偏差;其次,细节呈现能力还不够。比如,对空间、透视和光影的刻画就很不如意。不少人工智能渲染出的画作,初看上去惊艳,认真观察问题却不少。
但肖欣延认为,人工智能绘画在技法上的缺陷未来有望得到弥补。比如,基于跨模态大模型和强大的深度学习框架,百度开发的技术一定程度上已经缓解这些问题。此外,未来人工智能不仅能作画,还能根据文本描述生成视频,并直接配上解说文字,“可以把视频生成看作是维度更高的绘画,从技术层面看,这是可以实现的。”
防范潜在风险,守住法律和伦理底线
人工智能进入绘画领域,计算机会取代人类画师吗?
在肖欣延看来,好的绘画与构图、设计语言、视觉情绪息息相关,即使人人都可以用人工智能技术作画,但通常只有高水平的画师才能制作出优秀的人工智能绘画作品,“人工智能只是作画的辅助工具”。此外,虽然有的人工智能绘画语言娴熟,也包含细腻的情感,但并不意味着机器有意识、情感,它不过是学过类似的作品,又恰好呈现出来了。“优秀的艺术作品往往是人的思想的投射,目前机器并没有真正具备思考能力。”肖欣延说。
不少业内人士认为,不妨以开放的心态拥抱人工智能绘画,接受新事物。可以预想,将来绘画中一些繁琐、重复性的工作可能由计算机完成,创作者能腾出更多时间去构思想法与创意,调整构图、色彩、光影氛围等。
“人工智能可能会激发绘画创造的活力。”肖欣延表示,20世纪前后,照相技术让传统肖像画失去市场,促使一些画家向非写实方向创新。与人工智能技术融合,或许能激发画家创作出别开生面的作品。
不过,由于人工智能绘画发展刚刚起步,技术发展也引发关于版权、内容把控等问题的争议。比如,有人认为,未经授权人工智能画作模仿原画的内容、构图和风格等,侵犯了原作者的版权,有违法嫌疑。也有人认为,“机器学习”过程是一种类人化的创作行为,同样体现了创造者的思想和劳动,应当获得版权保护。此外,还有人担忧,人工智能绘画技术若被滥用,可能滋生暴力等令人不适的图像。面对新技术发展,有必要前瞻潜在的风险,只有守住法律和伦理底线,技术进步才能更好地造福社会。
不只是绘画,写作、作曲、生成短片,人工智能日益强大的深度学习能力,让它与不同艺术门类发生着奇妙的碰撞。展望未来,业界专家认为,人工智能与艺术融合,一方面会降低一些艺术门类的创造门槛,让更多人参与到当代的审美创造中来;另一方面新技术会带来新的审美风格,人们或许能从中扩展对自身和世界的认识。
记者 喻思南
(文图:赵筱尘 巫邓炎)